Stimulation des appels APl sans permissions et sans acceés officiel : (made by Loick

Devismes and Hajar Benkhadra)

Introduction:
les étapes initiale:

investigation sur une documentation d’une vrai API

documenter les endpoints disponible

créer une réponse JSON

déveloper un client API local
implementer API client (client.js)

tester les validation
valider le comportement de I'API

api mock guide :

configurer et tester les mock endpoints

identifier ce qu’il faut et les standards a suivre

utiliser des outils comme: mckoon, postman
créer de mock endpoint comme GET,POST...

implementer product service (product.js)

https://mockoon.com/articles/what-is-api-mocking/

mockoon documentation :

https://mockoon.com/tutorials/getting-started/

mockoon installation link:
https://mockoon.com/download/

postman website with guide:

https://learning.postman.com/docs/introduction/overview/

postman installation link:
https://www.postman.com/downloads/

différence entre Mockoon et Postman:

Mockoon:fake api server

Postman:api testing tool

Créer une API factice avec un faux serveur
backend pour simuler le comportement
d'une API avec des réponses prédéfinies
ou existantes (réponse JSON mentionnée
ci-dessus), crée des points de terminaison
fictifs sans nécessiter de code backend.
Serveur mock local

Espace non partagé (Live Share)

Test d'API (réelles, non simulées, avec un
serveur backend existant),Interagit avec
une API en direct en envoyant des
requétes,Mieux utilisé pour le débogage, la
documentation et I'automatisation des tests
d'API,Comprend des requétes HTTP et une
authentification,Stocke des variables

http://client.js
http://product.js
https://mockoon.com/articles/what-is-api-mocking/
https://mockoon.com/tutorials/getting-started/
https://mockoon.com/download/
https://learning.postman.com/docs/introduction/overview/
https://www.postman.com/downloads/

d'environnement pour différentes
configurations,Automatise les tests d'API
avec des scripts (JS),Prend en charge la
surveillance des API,C'est un espace
partagé

Mockoon ne peut pas remplacer Postman, et inversement :

e Mockoon n'envoie pas de requétes API réelles.

e Postman dispose d'une fonctionnalité de serveur mock, mais elle est moins flexible
que celle de Mockoon pour le mock local.

e Postman est plus adapté aux tests d'API qu'au mock.

e Mockoon ne peut pas étre intégré dans du code.

1. Etude de I'accés a L'API d’Aliexpress

Sur le site open service Aliexpress (Getting Started - AliExpress Open
Platform) Il est cité qu’apreés la création d'un compte développeur Pour
avoir acceés a I’AP|, il est nécessaire de remplir un formulaire
d’'information. Ce dernier demande des informations que nous n'avons
pas encore tel que: un extrait Kbis et le numéro SIREN de I'entreprise. ;

AliExpress Overseas

Create your account

Email Address® Full Name*

% SIGN UP.
Password"

AliExpress.com Free

Membership Agreement

https://openservice.aliexpress.com/doc/doc.htm?spm=a2o9m.11193535.0.0.70fa59b2sOXs2J&nodeId=27493&docId=118729#/?docId=1362
https://openservice.aliexpress.com/doc/doc.htm?spm=a2o9m.11193535.0.0.70fa59b2sOXs2J&nodeId=27493&docId=118729#/?docId=1362

AliExpress fiesta-machine4@outlook fr

Veuillez d'abord sélectionner le type de développeur

» : c

Les développeurs Les développeurs 4 Dropshipping/Développ
transfrontaliers étrangers d'Alliance
Développement de s 9 Développer de jciels, des 0

<<<<<<<<<<<

> Dropshipping (individuel/entreprise)
nectez Pl de la plate

AliExpress fiesta-machine4@outlook fr -

Base information Progress query

* Collaborator type
’ @ Complete Information

Under Review

(Corporation)

Upload Document

Il'y aurait aussi une autre API mais moins compléte pour les personnes
affiliés a Aliexpress mais le processus et encore plus complexe et ce n'est
pas ce que nous cherchons.

Et pour finir on retrouve I'API interne a Aliexpress qu’'on peut scrapper sur
le site directement. Voici un exemple
d'une réponse API d’'un produit scrappé:

Cependant, cette réponse n'est tres :
certainement pas ce qu'on recevra de e
I'’API développeur, car elle sont ¢
largement différentes et que I'API
interne a Aliexpress est privée.

[

Donc n'ayant pas de piste, notre seul
espoir est de regarder sur internet.
et donc j'ai demandé a ChatGPT

et il m'a répondu gqu’'effectivement,

Les API d’Aliexpress sont bien privées.
J'ai aussi demandé a quoi pourrait
ressembler une réponse vers I'API dev et
il m'a proposé ceci:

Copier

Ce qui est le plus probable et fiable qu'on peut trouver. (A considérer que
beaucoup d'éléments manquent et que la réponse ressemblera plus ou
moins a ¢a.)

Ce qui veut dire que nous ne pouvons que spéculer sur la méthode
d’interprétation de I’API. Car nous n'avons aucun indice sur les appels a
produire ainsi que sur les résultats donnés.

On peut noter qu'il n'y a aucune information par rapport a lI'ajout au
panier et aux ordres d'achats.

2. Identifications des fonctionnalités
Page d'accueil:

- Catégories simples avec 3-4 exemples de produits en vogue dans
cette derniére catégories. éléments comme: petite photo, prix,
réduc, nom.

- produit d'exemples (certainement venant d'un algorithme de
recommandations) méme éléments que l'appel de catégories.

Page de produit:

- Produit détaillés: prix nom, desc, prix de livraison, mini desc, avis,
nombre d’avis, note, nmbr vendu, couleur, taille (si vétement ou
accessoire), images

- Articles similaires: liés a un algo de recommandation.

Page de Catégories:

- Catégories complexe: multiples produits d'une catégorie,

certainement suivant aussi un algo de recommandation

On peut conclure, gu'il y a 3 types de recherches différentes:
- Les produits: simples pour les deals du jour ou autre, et complexe
pour les pages de produit
- Les catégories: simples pour une présentation de la catégories, et
complexe pour les pages associés
- Les recommandations: Basés sur un algorithme extrémement
complexe.
On peut aussi noter des calls a I'API pour mettre un objet dans le panier &
placer un ordre d’achat.

3. Création d’'une MockAPI sur Mockoon:

premiérement on met un environnement pour notre API et on configure son
URL (localhost:3000/api/v1) et puis des routes HTTP(GET,POST....):

Application File Routes Run Import/export View Tools Help

O Local 444 Routes {3 Dat;

Aliexpressmock - v
localhost:3000/api/v1
/products
GET

/products/:productid
GET

/products/search
GET

Jorders/:orderld
GET

/shipping/methods
GET

/shipping/calculate
GET

/home
GET

/categories/:categoriesID...
GET

/cart/add
POST

Jorders

POST 3 responses

puis CORS headers qui sera appliquer pour tout les routes :

O Local v i Rou) ¢ Data(1) @ Headers (7) Callbacks (1) 7a) @ Proxy f Settings

Aliexpressmock i | Content-Type application/json

localhost:3000/api/v1

Access-Control-Allow-Origin *

Access-Control-Allow-Methods GET,POST,PUT,PATCH,DELETE,HEAD,OPTIONS

Access-Control-Allow-Headers Content-Type, Origin, Accept, Authorization, Content-Length, X-Requested-With
Access-Control-Allow-Origin

Access-Control-Allow-Methods GET,POST,PUT,DELETE,OPTIONS

Access-Control-Allow-Headers Content-Type,Authorization

apres on lance le server et on récupeére les url si ca marche sinon on
recevoir des erreurs (techniguement ¢ca a marché)

TO BE TESTED:
in the frontend we try to add this for a direct api call :

© Copy & Download

In

const API_BASE =

Example: Fet
async function 1
try {
const response = await fetch(${API_BASE}/home", {
head
‘your-mock-key"' If authentication is

if (!response.ok) throw new Error('API error');
return await response.json();

} catch (error) {
console. r("API Error:", erro

or through axios:

javascript

/ api.js
import axios from 'axios’;

const mockAPI = axios.create({
baseURL: 'http://localhost:3000/v1’
headers: {
'X-API-Key': 'your-mock-key'
'Content-Type': 'application/json’

/1 du ce
export const ProductService = {
getProduct: (id) => mockAPI.get(/products/${id}"),

)i

Connect to backend with :

Jjavascript

const axios = require('axios');
const MOCK_API = "http://localhost:3088/v1";
/ Proxy te example

app.get('/api/products/:id', async (req, res) => {
try {

© Copy & Download

getCategoryProducts: (categoryId) => mockAPI.get(/categories/${categoryId}/products’)

© Copy sk Download

const response = await axios.get(' S${MOCK_API}/products/${req.params.id}");

res.json(response.data);
} catch (error) {
res.status(error.response?.status || 500)
.json(error.response?.data || { error:

environment configuration:
javascript
export const API_CONFIG = {

baseURL: import.meta.env.VITE_API_URL ||
isMock: true le be : (‘real

const api = axios.create({
baseURL: API_CONFIG.baseURL

3

"API failure" });

"http://localhost:3000/v1",
API

&, Download

